
Implementation of Vector, Linear Transformation,
and Quaternion Algebra in the Creation and

Manipulation of Bézier Curves for 3D Computer
Graphics

Z. Nayaka Athadiansyah – 135230941,2

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113523094@std.stei.itb.ac.id, 2nayaka.zna@gmail.com

Abstract—This paper aims to provide a simple demonstration
for Bézier curve and linear transformations in 3D computer
graphics. Vectors are implemented to generate 3D Bézier curves,
while linear transformation such as reflection, scaling, and
rotation are implemented using transformation matrices and
quaternions to manipulate the curves. Since Bézier curves are
affine combinations of its control points, which can be represented
as vectors, we can apply linear transformations to its control
points in order to apply those transformations to the whole
curve. A demonstration is carried by a simple OpenGL-based
GUI program made using GLFW and ImGUI in Python.

Keywords—3D computer graphics, bézier curve, linear trans-
formation, quaternion algebra, vector mathematics

I. INTRODUCTION

Computer graphics has been a broad and rapidly advancing
field of research since the 1960s, contributing significantly
to innovations across various fields of study [1], such as
computer-aided design, virtual reality, and video game devel-
opment. Computer graphics refers to the science and methods
of creating and manipulating visual representations of com-
puter objects [2]. It also includes the study of visual human-
computer interaction, which involves the use of peripheral
devices such as visual display units (VDUs) and keyboards
to facilitate interaction. It is a multidisciplinary field of re-
search involving engineering, physics, mathematics, computer
science, visual art, and behavioral science [1]. In this paper, we
will limit our discussions to 3D computer graphics exclusively.
Hence, whenever we mention ”computer graphics,” we refer
to ”3D computer graphics”.

In 1963, Ivan Sutherland, an electrical engineering Ph.D.
student at MIT Lincoln Laboratory, invented the Sketchpad.
This innovative computer program marked the beginning of
developments in computer graphics [3] [4]. Sketchpad sig-
nificantly demonstrated the initial application of a graphical
user interface (GUI) and was an early form of computer-aided
design (CAD) program, as it was specifically designed to cre-
ate and interactively modify graphical objects represented as
geometrical shapes. The program, written for an MIT Lincoln
Laboratory TX-2 computer, involved the usage of a light pen

Fig. 1. A 1963 demonstration of Ivan Sutherland’s Sketchpad. Source: MIT
Lincoln Laboratory

as an input device enabling the creation of geometrical figures
using line drawings instead of prompting through keyboard
input [5], making it a real-time interactive GUI program.

Fig. 2. Several examples of graphical illustrations created in Sketchpad (from
left): the winking lady ”Nefertite” and her graphical component parts; truss
diagrams of a cantilever and an arch bridge, with calculations of internal
forces in the members; and an electrical circuit. Source: [5]

Sketchpad users could reuse and combine existing graphical
objects to form a new one, letting the users structure its graphi-
cal objects hierarchically. Users could also create shapes using
constraints. For instance, users could create a parallelogram
by constraining the pair of sides to be parallel and having
equal length. Sutherland’s invention revolutionized human-
computer interaction, object-oriented programming, and, espe-
cially, computer graphics modeling. Later on, Sutherland and
David Evans, a computer science professor from the University
of Utah, established Evans and Sutherland to manufacture

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

mailto:13523094@std.stei.itb.ac.id
mailto:nayaka.zna@gmail.com

hardware capable of running computer graphics programs. Due
to his innovations, he was awarded the Turing Award in 1988
[4].

The next decades saw plentiful breakthroughs in the field.
Better imagery could be generated due to the development of
new methods and algorithms, including Z-buffer algorithm,
anti-aliasing, Phong shading, and ray tracing [6]. With a
growing enthusiasm for research in computer graphics the
Special Interest Group on Computer Graphics and Interactive
Techniques (SIGGRAPH) was founded in 1974 as a platform
for experts in computer graphics [7]. In the 1980s and 1990s,
milestones in computer graphics included the release of 3D
computer-animated films such as ”Tron,” ”Toy Story,” and
”Jurassic Park”; the introduction of 3D modeling software
such as Autodesk 3Ds Max and Maya and frameworks such
as OpenGL and Direct3D; and the emergence of graphical
processing units (GPUs) from companies like NVIDIA [6]
[8]. These advancements laid the foundations for cutting-
edge technologies in the field used today that can be seen
everywhere, from entertainment, engineering, medical science,
and many electronic appliances that we use daily.

One of the prominent concepts widely used in computer
graphics is the Bézier curve. It was discovered in 1962
by the French engineer Pierre Bézier—hence its name. The
mathematical groundwork to create such curve, de Casteljau’s
algorithm, had been discovered earlier in 1959 by Paul de
Casteljau, a French mathematician [9]. These curves are de-
fined by a parametric equation and a set of control points,
with two points acting as the both ends of the curve while
the rest acts as ”weights”. Bézier curves can also be extruded
or converted into meshes to create solid object models. Bézier
curves are commonly available in computer graphics software,
especially in 3D-modeling software like Blender and vector
graphics software such as Adobe Illustrator.

In this paper, we will discuss about creating Bézier curves in
R3 by modeling its control point as vectors and manipulating
it with linear transformations and quaternions.

II. THEORETICAL FOUNDATION

A. Vector
Vectors are the elements of a vector space [10]. In the

context of computer graphics, we talk about Euclidean vectors
in R3, which can be represented graphically as an arrow
pointing to its direction with a length corresponding to its
magnitude. A vector v can be denoted as an ordered tuple of
three numbers, a column matrix, or it can also be written using
unit notation, in which we make use of the standard basis of
R3: î = (1, 0, 0), ĵ = (0, 1, 0), and k̂ = (0, 0, 1),

v = (vx, vy, vz) =

vxvy
vz

 = vxî+ vy ĵ + vz k̂, (1)

where vx, vy , and vz are its components along x, y, and z
axes, respectively [11]. A vector’s magnitude (denoted as |v|)
can be calculated using the Pythagorean theorem as

|v| =
√
v2x + v2y + v2z . (2)

A vector’s magnitude can be scaled by multiplying the
vector by a scalar k ∈ R. Mathematically,

kv = k

vxvy
vz

 =

kvxkvy
kvz

 . (3)

Graphically, multiplying a vector by a negative scalar results
in inverting its direction. Scalar multiplication is distributive
towards scalar and vector addition,

(k + ℓ)v = kv + ℓv (4)
k(u+ v) = ku+ kv (5)

and associative,
(kℓ)v = k(ℓv). (6)

Using scalar multiplication and a vector’s magnitude, we can
normalise it i.e. turning the vector’s magnitude into 1 by using
the formula

v̂ =
1

|v|
v. (7)

Since the magnitude of vector v is |v|, this formula essentially

transforms the vector’s magnitude into |v| · 1

|v|
= 1 while

preserving its orientation [11]. The vector v̂ is called the unit
vector in the direction of v.

Addition between two (or more) vectors can be performed
by adding the corresponding components, i.e.u =

ux

uy

uz

 ∧ v =

vxvy
vz

 =⇒ u+ v =

ux + vx
uy + vy
uz + vz

 .

(8)
Vector addition is commutative,

u+ v = v + u, (9)

and associative,

u+ (v +w) = (u+ v) +w. (10)

In its graphical representation, vector addition can be done by
placing the tail of the second vector to the first vector’s head.

B. Linear Transformation

The linear transformation from Rn to Rm is defined as the
function T that transform every vector v in Rn to a corre-
sponding vector, T (v) in Rm [10]. A linear transformation
shall satisfy the condition

T (v+w) = T (v)+T (w) and T (cv) = cT (v) (11)

for all v,w ∈ (V), and k ∈ R [10]. Note that if the basis
vectors of V is v1, v2, . . . , vn, then every vector v ∈ V can
be expressed as a linear combination of them,

v = c1v1 + c2v2 + . . . cnvn. (12)

When we want to apply a linear transformation to a particular
vector of a vector space V, it is more helpful to consider the
general case: how does the linear transformation apply to the
basis vectors of V?

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

Since every vector in V can be expressed in terms of
its basis vectors, knowing the images of new basis vectors
under the linear transformation is sufficient to determine the
transformed vector. Suppose

T (v1) = a11v1 + a21v2 + · · ·+ an1vn

T (v2) = a12v1 + a22v2 + · · ·+ an2vn

...
T (vn) = a1nv1 + a2nv2 + · · ·+ annvn.

We can rewrite this system of equations into
T (v1)
T (v2)

...
T (vn)

 =


a11 a21 · · · an1
a12 a22 · · · an2

...
...

. . .
...

a1n a2n · · · ann


︸ ︷︷ ︸

A


v1

v2

...
vn

 (13)

The matrix A is called the transformation matrix of T . In
other words, T (v) can be acquired from multiplying A and v
[11].

There are several common linear transformation matrices
[11]. The reflection matrices

Rxy =

1 0 0
0 1 0
0 0 −1

 , Rxz =

1 0 0
0 −1 0
0 0 1

 ,

and Ryz =

−1 0 0
0 1 0
0 0 1


reflects a vector across the xy, xz, and yz-plane, respec-

tively. Scaling a vector v by a scalar k can be acquired
by multiplying them, but we can also view it as a matrix
multiplication,

kv =

kvx

kvy

kvz

 =

k 0 0
0 k 0
0 0 k

vx

vy

vz

 .

When the diagonal entries are not equal, we get a nonuni-
form scale matrix, kx 0 0

0 ky 0
0 0 kz

 .

Next, the matrix for shear mapping, in which points lying
on an axis stays the same while the rest is shifted parallel
towards the axis is given by 1 xy xz

yx 1 yz
zx zy 1


Lastly, the transformation matrix to rotate a vector in the

angle of θ about an axis defined by a unit vector (x, y, z) is x2(1− cθ) + cθ yx(1− cθ)− zsθ zx(1− cθ) + ysθ
xy(1− cθ) + zsθ y2(1− cθ) + cθ zy(1− cθ)− xsθ
xz(1− cθ)− ysθ yz(1− cθ) + xsθ z2(1− cθ) + cθ


where cθ = cos θ and sθ = sin θ [11].

C. Affine Transformation and Combination

The affine transformation from Rn to Rm is defined as the
function T in the form of

T (x) = Ax+ b, (14)

where A is a linear transformation (which, as we have shown,
can be represented by its transformation matrix) and b ∈ Rm,
which can be seen as the translation vector. Linear transfor-
mations are part of affine transformations, which preserves
lines and parallelism [13]. It can be seen that the linear
transformation is the special case when b = 0.

Let t0, . . . , tk ∈ R such that
∑k

i=0 ti = 1. Given the vectors
x0, . . . , xk ∈ Rn, then

∑k
i=0 tixi is an affine combination of

them [15]. It can be proven that when an affine transformation
is applied to an affine combination, the image can be calculated
by applying the same affine transformation to the individual
vectors, since

T

(
k∑

i=0

tixi

)
= A

k∑
i=0

tixi + b

= A

k∑
i=0

tixi +

k∑
i=0

tib

=

k∑
i=0

tiAxi +

k∑
i=0

tib

=

k∑
i=0

ti(Axi + b)

=

k∑
i=0

tiT (xi) (15)

D. Quaternion

Quaternions, usually denoted as q, are elements of a 4-
dimensional vector space, H, over R [11] [12]. A quaternion
can be expressed in the form

q = ⟨w, x, y, z⟩ = w + xi+ yj + zk, (16)

where w, x, y, and z are real numbers, while the imaginary
components i, j, and k is defined by the relationship

i2 = j2 = k2 = ijk = −1. (17)

The imaginary components are also related to each other as

ij = −ji = k, (18)
jk = −kj = i, (19)
ki = −ik = j. (20)

We can also view w as a scalar and xi+yj+zk as a vector in
R3. When w = 0, it becomes a regular 3-dimensional vector.
Quaternions of this particular kind are pure quaternions.

One of the main properties of quaternions are norms, the
4-dimensional counterpart of the magnitude of 3-dimensional
vectors, which is a real number defined as

|q| =
√

w2 + x2 + y2 + z2. (21)

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

Let q1 = w1+x1j+y1j+z1k and q2 = w2+x2j+y2j+z2k.
Addition and subtraction between two quaternions q1 and q2
is defined as

q1 ± q2 = (w1 +w2)+ (x1 +x2)i+(y1 + y2)j+(z1 + z2)k. (22)

Addition and subtraction between quaternions are commuta-
tive and associative. We now introduce ourselves to quaternion
multiplication, which are defined as

q1q2 = (w1 + x1j + y1j + z1k)(w2 + x2j + y2j + z2k)

= (w1w2 − x1x2 − y1y2 − z1z2)

+ (w1x2 + x1w2 + y1z2 − z1y2)i

+ (w1y2 − x1z2 + y1w2 + z1x2)j

+ (w1z2 + x1y2 + y1x2 + z1w2)k. (23)

which can be viewed as if we were distributing each com-
ponent of q1 to q2, akin to applying the distributive law for
multiplication in arithmetics, while considerating the identities
in equation 18, 19, and 20.

The conjugate of a quaternion q = w+xi+yj+zk, denoted
as q∗ or q̄, is defined by

q∗ = q = w − xi− yj − zk (24)

One of the interesting results from this is that

q · q∗ = (w + xi+ yj + zk)(w − xi− yj − zk)

= (w2 + x2 + y2 + z2)

= +(−wx+ wx− yz + zy)i

= +(−wy + xz − yw − zx)j

= +(−zw − xy − yx+ zw)k

= w2 + x2 + y2 + z2

= |q|2 (25)

This result can be used to derive for the formula of the
multiplicative inverse of a nonzero quaternion, q−1. Since q ·
q−1 = 1 by definition, we get

q−1 =
q∗

|q|2
(26)

because qq∗ = |q|2/|q|2 = 1.
Quaternions with norm of 1 are unit quaternions, which can

be represented as

q = cos θ + û sin θ, (27)

where û is a 3-dimensional normal vector. Similarly,

q−1 = cos θ − û sin θ. (28)

Using this form, we can rotate any vector v with a given
angle. Let u be a vector in the line of the axis of rotation of
our choice such that the normal vector in its direction is û
and let 2θ be the counterclockwise rotation angle. Now, we
can express the vector v as a pure quaternion by writing it as
p = 0+v. The rotated vector v′ in the form of pure quaternion
p′ = 0 + v′ can be acquired through the equation

p′ = qpq−1 (29)

E. Comparation of 3-Dimensional Rotation Formalisms

There are three common 3-dimensional rotation formalisms
which can be converted into one another, namely rotation
matrices, Euler angles, and quaternions. [16] provides a thor-
ough analysis on comparing their performances. The three of
them equally have a time complexity of O(n). The rotation
matrix has the biggest memory usage, since they need to store
the 9 elements of the 3 × 3 matrix, while Euler angles only
need to store 3 values, whereas quaternions require to store 4
values. Additionally, composing a unit quaternion takes lesser
operations compared to rotation matrix and Euler angles.

Euler angles, unfortunately, suffer from a phenomenon
commonly known as the gimbal lock, in which. Moreover, the
extensive calculation in rotation matrices might cause errors
due to truncation or rounding. Thus, in this paper we will use
quaternions for rotating Bézier curves.

F. Bézier Curve

Bezier curves are parametric curves defined by a set of
control points and a parametric equation. These particular kind
of curves are widely used in computer graphics because it
enables the creation of smooth curves for modeling. The first
and last control points acts as the curve initial and final point,
while the rest acts as weights that shapes the curve’s curvature.

A Bézier curve has a degree, a quantity related to the amount
of its control points. Given a set of n + 1 control points, a
Bézier curve of degree n is defined by the parametric equation

B(t) =

n∑
i=0

bi,n(t)Pi, t ∈ [0, 1], (30)

where bi,n is the Bernstein basis polynomial [17]

bi,n(t) =

(
n

i

)
ti(1− t)n−i (31)

and (
n

i

)
=

n!

i!(n− i)!
(32)

is the binomial coefficient. We will limit the scope of Bézier
curve in this paper to cubic Bézier curves as they are the
most commonly used type of Bézier curves in computer
graphics. The method to create the Bézier curve graph is called
de Casteljau’s algorithm [17]. It recursively performs linear
interpolation between the control points to generate a smooth
graph of a Bézier curve.

Fig. 3. An illustration of de Casteljau’s algorithm. Source: [17]

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

The algorithm can be implemented as follows:
Input: Control points P0,P1,P2,P3 ∈ R2 or R3,

parameter t ∈ [0, 1]
Output: Point B(t) on the Bézier curve

Step 1: Linear interpolation of the first level

P01 = (1− t)P0 + tP1

P12 = (1− t)P1 + tP2

P23 = (1− t)P2 + tP3

Step 2: Linear interpolation of the second level

P012 = (1− t)P01 + tP12

P123 = (1− t)P12 + tP23

Step 3: Linear interpolation of the third level (final
point)

B(t) = (1− t)P012 + tP123

return B(t)
Algorithm 1: De Casteljau’s Algorithm for Cubic Bézier
Curves

The variable t can be seen as ”time”, where t = 0 at P0

and t = 1 at Pn.

III. ANALYSIS

To demonstrate Bézier curve generation and manipulation,
we will create a program in Python using OpenGL, assisted
with the libraries GLFW and ImGUI. NDArray and trigono-
metric functions from NumPy is also used. For demonstration
purpose, we will use cubic Bézier curve. The four control
points can be seen as vectors. We then apply de Casteljau’s
algorithm to generate the Bézier curve into the display.

It can be shown that Bézier curves are affine combinations.
This is done by showing that the Bernstein basis polynomial
satisfy the condition for an affine combination. From the
binomial expansion formula, we have

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i. (33)

Hence, the sum of Bernstein basis polynomial from degree 0
to the n-th degree is

n∑
i=0

bi,n(t) =

n∑
i=0

(
n

i

)
ti(1− t)n−i = (t+ 1− t)n = 1 (34)

Hence, we can apply linear transformations to each of
the control points to apply the transformation to the whole
Bézier curve. Additionally, we will use quaternions to perform
rotation.

The program interface comprises two main parts: the main
window and the control panel. The main window acts as
the Bézier curve’s display, giving dynamical 3D visualization
space, and observing the possibility of real-time transforma-
tions in it. From this window, it becomes achievable to view
the geometry of the curve from a clear and unambiguous

perspective, therefore facilitating an easy analysis and under-
standing of its structure and modifications.

The control panel provides a set of tools that are interactive
and intuitive for you to manipulate the Bézier curve along the
x, y, and z axes. The panel consists of checkboxes, radio
buttons, and sliders, arranged into categories of reflection,
scaling, rotation, and shear mapping. Reflection is achieved by
specifying the desired axis through radio buttons, upon which
the curve is instantly mirrored across the plane of choice. The
user can move the sliders to adjust the scale factor to effect
uniform or non-uniform changes. Likewise, we can also do
the same for rotation and shear transformation.

For a cubic Bézier curve B defined by the control points
P0 = (−2,−2, 3), P1 = (−1, 2, 0), P2 = (1,−1,−4), and
P3 = (2, 1, 1), we will perform linear transformations to
the curve using the program, namely reflection, scaling, and
rotation. The results are as follows:

Fig. 4. Graph of B (left) and B scaled with the factor kx = 0.1, ky = 1,
kz = 1.5 (right).

Fig. 5. B reflected to the x, y, and z axes, from left.

Fig. 6. Demonstration of shear mapping (left) and rotation (right).

IV. CONCLUSION

This paper presents a simple yet powerful way to create and
manipulate Bézier curves in three dimensions with the help
of vector mathematics and linear transformations. Considering
the affine properties of Bézier curves, we made an indication
of how to perform linear transformations onto the whole curve
smoothly passing the transformations of its control points. At
the same time, the use of quaternions for rotation goes the
extra mile, giving an immediate solution to typical problems,
including gimbal lock, with better computational performance
than conventional matrices and Euler angles.

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

Implemented through a Python-based OpenGL GUI using
GLFW and ImGUI, our work established an interactive en-
vironment for the real-time visualization and manipulation of
cubic Bézier curves. This was achieved with the controls on a
graphical interface through which transformation parameters
could be varied along the x, y, and z axes, thus making
geometric transformations easily accessible in 3D space.

The demonstration further strengthen the theoretical foun-
dation for the practical use of vector-based representations in
concert with techniques from linear algebra and quaternion
algebra for computer graphic applications. Just as it lays a
hardcore background for the manipulation of Bézier curves, so
too will it offer support for still higher modeling and animation
work relating to three dimensions in 3D domains.

V. APPENDIX

The GitHub repository containing the source code for a
simple demonstration, as well as the source of several images
in this paper, can be accessed here. The repository also
includes detailed instructions on how to run the code.

VI. ACKNOWLEDGMENT

Untaian benang takdir mempersatukan kita,
Teknik Informatika berjiwa kesatria.

I would like to express my heartfelt gratitude to Dr. Ir.
Rinaldi Munir, M.T., the lecturer of my IF2123 Aljabar Linear
dan Geometri (Linear and Geometry Algebra) class, for his
guidance throughout my first semester in the Informatics
Engineering program at ITB. Moreover, I present my warmest
gratitude to Ayesach Svarosstinez Adhyatman for inspiring the
creation of this paper and for her continuous encouragement
and support throughout its development. Lastly, thanks to
Beyoncé.

REFERENCES

[1] J.F. Hughes, Computer Graphics: Principles and Practice, 3rd ed.
Reading, MA: Addison-Wesley, 1995, pp. 1–10, 598.

[2] D.J. Eck, Introduction to Computer Graphics, v.1.4. Available:
https://math.hws.edu/eck/cs424/downloads/graphicsbook-linked.pdf.
[Accessed: Dec. 27, 2024 23:30].

[3] A. Sears and J. A. Jacko, The Human–Computer Interaction Handbook:
Fundamentals, Evolving Technologies and Emerging Applications, 2nd
ed. Boca Raton, FL, USA: CRC Press, 2007, p. 5. Available (preview):
https://books.google.co.id/books?id=A8TPF O385AC. [Accessed: Dec.
28, 2024 00:30].

[4] K. A. Frenkel, ”An interview with Ivan Sutherland,” Commun. ACM,
vol. 32, pp. 712-714, 1989.

[5] I. E. Sutherland, ”Sketchpad: A man-machine graphical communication
system,” in Proc. May 21-23, 1963, Spring Joint Computer Conference
(AFIPS ’63 Spring), New York, NY, USA, 1963, pp. 329–346. doi:
10.1145/1461551.1461591. [Accessed: Dec. 28, 2024 00:55].

[6] K. Sathyanarayana and G. V. V. Ravi Kumar, ”Evolution of Com-
puter Graphics and Its impact on Engineering Product Develop-
ment” in 2008 Fifth International Conference on Computer Graphics,
Imaging and Visualisation, Penang, Malaysia, 2008, pp. 32-37, doi:
10.1109/CGIV.2008.67. [Accessed: Dec. 28, 2024 00:57].

[7] D. J. Kasik, M. C. Whitton and C. R. Johnson, ”The Big 50: Celebrat-
ing 50 ACM SIGGRAPH Conferences” in IEEE Computer Graphics
and Applications, vol. 43, no. 04, pp. 12-80, July-Aug. 2023, doi:
10.1109/MCG.2023.3266086. [Accessed: Dec. 28, 2024 01:10].

[8] Z. Sun, “What Does CGI Digital Technology Bring to the Sustainable
Development of Animated Films?” in Sustainability, vol. 15, no. 14.
MDPI AG, p. 10895, Jul. 11, 2023. doi: 10.3390/su151410895. [Ac-
cessed: Dec. 28, 2024 01:13].

[9] Å. Kilicoglu, S. Åženyurt (2020). On the involute of the cu-
bic Bezier curve by using matrix representation in E3. European
Journal of Pure and Applied Mathematics, 13(2), 216–226. doi:
10.29020/nybg.ejpam.v13i2.3648. [Accessed: Dec. 30, 2024 03:26].

[10] G. Strang, Introduction to Linear Algebra, 6th ed. Wellesley, MA:
Wellesley-Cambridge Press, 2023.

[11] E. Lengyel, Mathematics for 3D Game Programming and Computer
Graphics, 3rd ed. Boston, MA, USA: Cengage Learning, 2011, pp. 317–
329. ISBN: 978-1-4354-5886-4.

[12] [1] R. Goldman, “Understanding quaternions,” Graphical Mod-
els, vol. 73, no. 2. Elsevier BV, pp. 21–49, Mar. 2011. doi:
10.1016/j.gmod.2010.10.004.

[13] R. T. Rockafellar, Convex analysis. Princeton,
NJ: Princeton University Press, 1970. Available:
https://archive.org/details/convexanalysis0000rock. [Accessed Jan.
2 2025 04:11].

[14] Reinhard Schultz, Affine transformations and convexity, n.d. Avail-
able: https://math.ucr.edu/r̃es/math145A-2014/affine+convex.pdf. [Ac-
cessed: Jan. 2, 2025 03:38].

[15] D. Bertsekas, A. Nedic, and A. Ozdaglar, Convex analysis and optimiza-
tion. Belmont, MA: Athena Scientific, 2003.

[16] S. Kim and M. Kim, “Rotation Representations and Their Conver-
sions,” IEEE Access, vol. 11, pp. 6682–6699, 2023. doi: 10.1109/AC-
CESS.2023.3237864 . [Accessed: Dec. 28, 2024 05:02].

[17] J. Galier, Curves and Surfaces In Geometric Modeling: Theory And
Algorithms, 2nd ed. Accessed Dec. 28 2024. [Online]. Available:
https://www.cis.upenn.edu/ jean/geomcs-v2.pdf. [Accessed: Dec. 25,
2024 18:22].

DECLARATION OF ORIGINALITY

I hereby declare that the work presented in this paper is
entirely my own. It is not a copy, translation, or adaptation of
any other author’s work, and it does not constitute plagiarism.

Bandung, December, 28th 2024

Z. Nayaka Athadiansyah – 13523094

Makalah IF2123 Aljabar Linier dan Geometri – Teknik Informatika ITB – Semester I Tahun 2024/2025

https://github.com/nayakazna
https://math.hws.edu/eck/cs424/downloads/graphicsbook-linked.pdf
https://books.google.co.id/books?id=A8TPF_O385AC&pg=PA1&hl=id&source=gbs_toc_r&cad=2#v=onepage&q&f=false
https://doi.org/10.1145/1461551.1461591
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4626981
https://doi.ieeecomputersociety.org/10.1109/MCG.2023.3266086
https://www.mdpi.com/2071-1050/15/14/10895
https://doi.org/10.29020/nybg.ejpam.v13i2.3648
https://www.researchgate.net/publication/220632454_Understanding_quaternions
https://archive.org/details/convexanalysis0000rock
https://math.ucr.edu/~res/math145A-2014/affine+convex.pdf
https://ieeexplore.ieee.org/document/10019271
https://ieeexplore.ieee.org/document/10019271
https://www.cis.upenn.edu/~jean/geomcs-v2.pdf

	Introduction
	Theoretical Foundation
	Vector
	Linear Transformation
	Affine Transformation and Combination
	Quaternion
	Comparation of 3-Dimensional Rotation Formalisms
	Bézier Curve

	Analysis
	Conclusion
	Appendix
	Acknowledgment
	References

